Martingale matrix classes and polytopes

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polytopes Determined by Hypergraph Classes

DEFINITION 1.1. For a finite subset Xc IR n + 1 we say that D is the dominating set of X if (a) Dc X, (b) for all x E X there exist dlo d2 , ••• , dj ED and positive real numbers alo"" aj so that L. a, = I and L. ajdj dominates x, (c) D is minimal with respect to these properties. The elements of D are called dominating vertices. It is not hard to see that D consists of exactly those vertices o...

متن کامل

Segre Classes as Integrals over Polytopes

We express the Segre class of a monomial scheme—or, more generally, a scheme monomially supported on a set of divisors cutting out complete intersections— in terms of an integral computed over an associated body in euclidean space. The formula is in the spirit of the classical Bernstein-Kouchnirenko theorem computing intersection numbers of equivariant divisors in a torus in terms of mixed volu...

متن کامل

Logarithmic Growth for Matrix Martingale TransformA

We are going to give the example of the operator weight W satisfying operator Hunt-Muckenhoupt-Wheeden A 2 condition but which provides the unbounded martingale transform on L 2 (W). The construction relates weighted boundedness with the boundedness of \dyadic vector Hankel operators".

متن کامل

Asymptotics for Incidence Matrix Classes

We define incidence matrices to be zero-one matrices with no zero rows or columns. We are interested in counting incidence matrices with a given number of ones, irrespective of the number of rows or columns. A classification of incidence matrices is considered for which conditions of symmetry by transposition, having no repeated rows/columns, or identification by permutation of rows/columns are...

متن کامل

Ideal Classes and Matrix Conjugation over Z

When R is a commutative ring, matrices A and B in Mn(R) are called conjugate when UAU−1 = B for some U ∈ GLn(R). The conjugacy problem in Mn(R) is: decide when two matrices in Mn(R) are conjugate. We want to look at the conjugacy problem in Mn(Z), where ideal theory and class groups make an interesting appearance. The most basic invariant for conjugacy classes of matrices is the characteristic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2012

ISSN: 0024-3795

DOI: 10.1016/j.laa.2012.04.042